Кто такой дата-сайентист и как им стать

Теги:
  • Образование / Работа в ИТ
  • Технологии

Умение работать с технологиями Big Data — редкий и ценный навык, открывающий перед вами перспективу стать супервостребованным и высокооплачиваемым специалистом.

 

kto-takoj-data-sajentist-i-kak-im-stat

 

Профессия Data Scientist в 2016 году она возглавила рейтинг 25 лучших вакансий в США кадровой компании Glassdoor. Не будем подробно останавливаться на том, почему сегодня эта профессия считается одной из самых высокооплачиваемых, привлекательных и перспективных в мире. Отметим лишь, что число вакансий в этом направлении продолжает расти по экспоненте. Согласно прогнозам McKinsey Global Institute, к 2018 году в одних только США понадобится дополнительно порядка 140-190 тысяч специалистов по работе с данными.

Неудивительно, что сегодня так много желающих  освоить эту профессию. Давайте разберемся, кто же такой Data Scientist и какими навыками и знаниями он должен обладать.

Кто он, Data Scientist?

Вообще-то Data Scientist —  профессия, окруженная разными мифами. В глазах одних Data Scientists — это подобие шаманов, способных из «больших данных добывать нефть», причем знаний в области бизнеса от них не требуется. Другие причисляют к этой профессии вообще почти любого программиста: умеешь программировать —  умеешь работать с данными.

Мне ближе определение, которое дает специалист по биологической статистике Джеффри Лик из Университета Джонса Хопкинса. Data Scientist — это специалист, владеющий тремя группами навыков:

  • IT-грамотность — программирование, придумывание и решение алгоритмических задач, владение софтом;
  • Математические и статистические знания;
  • Содержательный опыт в какой-то области — понимание бизнес-запросов своей организации или задач своей отрасли науки.

Причем вакансии, подразумевающие эту специализацию, могут называться по-разному. Среди самых популярных названий — аналитик Big Data, математик или математик-программист, менеджер по анализу систем, архитектор Big Data, бизнес-аналитик, BI-аналитик, информационный аналитик, специалист Data Mining, инженер по машинному обучению и многие другие.

Сколько стоит специалист по данным

На сегодняшний день только треть спроса на Data Science специалистов может быть удовлетворена. Недонасыщенный рынок не может предоставить компаниям квалифицированные кадры в области Data Mining или прогнозной аналитики, что ведёт к росту спроса и зарплат.

В США, согласно O’Reilly Media, уровень зарплат Data Scientists может доходить до $138 тысяч в год и выше — в зависимости от уровня квалификации. Для сравнения, средняя зарплата программиста, по их же оценкам, составляет $65-80 тысяч в год.

Образование в области Data Science: ничего невозможного нет

Сегодня для тех, кто хочет развиваться в сфере анализа больших данных, существует очень много возможностей: различные образовательные курсы, специализации и программы по data science на любой вкус и кошелек, найти подходящий для себя вариант не составит труда.

На мой взгляд, лучший багаж знаний и навыков для работы в этой области можно получить в высших учебных заведениях по направлениям: «Прикладная математика», «Информатика», «Математическая статистика».

Потому как Data Scientist — это человек, который знает математику. Анализ данных, технологии машинного обучения и Big Data — все эти технологии и области знаний используют базовую математику как свою основу.

Многие считают, что математические дисциплины не особо нужны на практике. Но на самом деле это не так.

Хорошее понимание математических основ этих методов и знание их связи с реальными конкретными алгоритмами позволило бы избежать таких проблем.

Кстати, для обучения на различных профессиональных курсах и программах по Big Data зачастую требуется хорошая математическая подготовка.

«А если я не изучал математику или изучал ее так давно, что уже ничего и не помню»? — спросите вы. «Это вовсе не повод ставить на карьере Data Scientist крест и опускать руки», — отвечу я.

Есть немало вводных курсов и инструментов для новичков, позволяющих освежить или подтянуть знания по одной из вышеперечисленных дисциплин. Например, специально для тех, кто хотел бы приобрести знания математики и алгоритмов или освежить их, мы с коллегами разработали специальный курс GoTo Course. Программа включает в себя базовый курс высшей математики, теории вероятностей, алгоритмов и структур данных — это лекции и семинары от опытных практиков. Особое внимание отведено разборам применения теории в практических задачах из реальной жизни. Курс поможет подготовиться к изучению анализа данных и машинного обучения на продвинутом уровне и решению задач на собеседованиях.

Ну а если вы еще не определились, хотите ли заниматься анализом данных и хотели бы для начала оценить свои перспективы в этой профессии, попробуйте почитать специальную литературу, блоги о науке данных или посмотреть лекции. Например, рекомендую почитать хабы по темам Data Mining и Big Data на Habrahabr. Для тех, кто уже хоть немного в теме, со своей стороны порекомендую книгу «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных» Петера Флаха — это одна из немногих книг по машинному обучению на русском языке.

В любом случае помните, что эта специальность потребует от вас глубоких знаний в области математической статистики, машинного обучения и программирования.

Заниматься Data Science так же трудно, как заниматься наукой в целом. В этой профессии нужно уметь строить гипотезы, ставить вопросы и находить ответы на них. Само слово scientist подталкивает к выводу, что такой специалист должен, прежде всего, быть исследователем, человеком с аналитическим складом ума, способный делать обоснованные выводы из огромных массивов информации в достаточно сжатые строки. Скрупулезный, внимательный, точный — чаще всего он одновременно и программист, и математик.

Заключение

Профессия Data Scientist сама по себе является высоким достижением, для которой требуются серьезные теоретические знания и практический опыт нескольких профессий сразу. В любой компании такой специалист на вес золота. Чтобы достичь желаемых целей и постичь эту науку нужно упорно и целенаправленно работать и постоянно совершенствоваться во всех сферах, составляющих основу профессии.

А еще бытует мнение, что лет через 10—20 любому менеджеру в продвинутой компании будет просто необходимо владеть хотя бы базовыми навыками Data Science. Как однажды рекрутер Линда Берч сказала в своем интервью Mashable: «Если вы не помешаны на данных, то через десять лет вам просто не найдется места в рядах начальников». Что ж, как говорится, поживем — увидим!

 

Источник Rusbase

 

 

Вступай в сообщества ITmentor Вконтакте и Facebook

 

Опубликован: 19-09-2017 1441 Поделиться: